
Automatic Classification of Guitar
Playing Modes

Raphael Foulon(&), Pierre Roy, and François Pachet

Sony Computer Science Laboratory, Paris, France
{raphael.foulon,pachetcsl}@gmail.com

Abstract. When they improvise, musicians typically alternate between several
playing modes on their instruments. Guitarists in particular, alternate between
modes such as octave playing, mixed chords and bass, chord comping, solo
melodies, walking bass, etc. Robust musical interactive systems call for a pre-
cise detection of these playing modes in real-time. In this context, the accuracy
of mode classification is critical because it underlies the design of the whole
interaction taking place. In this paper, we present an accurate and robust playing
mode classifier for guitar audio signals. Our classifier distinguishes between
three modes routinely used in jazz improvisation: bass, solo melodic improvi-
sation, and chords. Our method uses a supervised classification technique
applied to a large corpus of training data, recorded with different guitars
(electric, jazz, nylon-strings, electro-acoustic). We detail our method and
experimental results over various data sets. We show in particular that the
performance of our classifier is comparable to that of a MIDI-based classifier.
We describe the application of the classifier to live interactive musical systems
and discuss the limitations and possible extensions of this approach.

Keywords: Audio classification � Playing mode � Guitar � Interactive musical
systems

1 Introduction

An ideal interactive musical system should allow users to play as if they were per-
forming with fellow musicians. To achieve this, the behavior of such an ideal system
must be predictable and consistent. One way to achieve this is to provide explicit
controls such as manual switches, pedals, knobs, or sliding faders. However, some
musical intentions cannot be given explicitly because it creates a cognitive overhead
that interferes with the performance.

Musicians typically alternate between several playing modes when they improvise.
A guitarist, for instance may alternate between chord comping, solo melodic impro-
visation, or walking bass. Each mode calls for a specific reaction from the other
musicians. For instance, in a guitar duo, if one musician improvises a solo melody, the
other will usually complement with chord comping.

In this paper, we address the problem of automatically classifying the audio input of
a guitar improviser into three musical modes (melody, chords, and bass). We show that

© Springer International Publishing Switzerland 2014
M. Aramaki et al. (Eds.): CMMR 2013, LNCS 8905, pp. 58–71, 2014.
DOI: 10.1007/978-3-319-12976-1_4

recognizing these modes automatically and in real-time opens the way to musically
aware interactive applications such as VirtualBand [14] or augmented instruments.

Research developed in the MIR community has focused mainly on expressivity
parameters and on the classification of playing techniques for various musical instru-
ments. Lähdeoja et al. proposed a system that classifies in real time different playing
techniques used by a guitarist [12, 15]. These techniques include up and down legatos,
slides, slapped/muted notes, as well as the position of the pick on the neck with regards
to the bridge. The system relies on the analysis of both the incoming audio signal and/
or gesture capture data. Similar topics have been investigated with the goal of modeling
expressivity, such as the articulation in nylon guitar [13]. Abesser et al. present a
feature-based approach to classify several plucking styles of bass guitar isolated notes,
and describes an automatic classifier of guitar strings for isolated notes using a feature-
based approach [1] and a two-step analysis process [2]. Barbancho et al. study the
retrieval of played notes and finger positions from guitar audio signals [3]. Instrumental
technique classification methods have been investigated for beatboxing [17, 19] and for
snare drums [20] with some success.

Stein et al. [18] describe an approach to analyze automatically audio effects applied to
an electric guitar or bass, and Fohl et al. [6] studied the automatic classification of guitar
tones. As we will see below, their objective is in some sense opposite to ours, since we
aim at extracting information from the guitar signal that is precisely timbre-independent.

We propose a method to extract information about the musical content that is
played, regardless of expressive parameters and of the technique used. For instance,
jazz guitarists use various playing modes: octave playing (typical of Georges Benson or
Wes Montgomery), chord comping, bass lines, mix of chords and bass (as in bossa
nova). Our aim is precisely to detect these playing modes in real time for interactive
applications. Each mode may be played in many different ways using different tech-
niques and with different expressivity parameters. We do not aim at extracting infor-
mation about how something is played, e.g., staccato, legato, slapped, but rather about
what is played, e.g., melodies, octaves, single notes, bass, chords.

Playing modes would be in principle easy to analyze from a score of the perfor-
mance. However, score-related symbolic data (pitches, durations) are available only
from MIDI instruments. Furthermore, the accuracy of MIDI guitars is far from perfect
and requires specific, expensive hardware. The accuracy of automatic score tran-
scription from audio [10, 16] is not high enough to build robust live systems. More
specifically, Hartquist [8] addresses the problem of automatic transcription of guitar
recordings, but this approach is only evaluated on a pre-recorded note template library
for a nylon string acoustic guitar, therefore, it is unclear whether it can cope with the
dynamic variation that can occur in live recordings and with other types of guitars.

One key problem is to detect accurately and robustly polyphony from the guitar signal.
The classification of monophony versus polyphony has been investigated [11] using the
YIN pitch estimation algorithm [4] with bivariate Weibull models. This method is practical
since it only requires short training sets (about two minutes of audio signal is enough) and
works for many instruments with good performance (6.3 % global error rate). Most
importantly, this work shows that YIN is an accurate descriptor for polyphony detection.

In this paper, we describe a mode classifier that classifies guitar audio signals into
three basic playing modes described above: bass, chords and melody. Following the

Automatic Classification of Guitar Playing Modes 59

approach of Abesser [2], the classifier is based on a two-step analysis process (single
frames then smoothing on larger windows), based on YIN-derived features, pitch and
inharmonicity indicator [3, 11].

Our classifier is largely timbre-independent, i.e., it performs well on the four types
of guitar we tested. We describe the training data in the next section. The classifier is
described in Sect. 3 and its performance is discussed in Sect. 4. Section 5 describes
applications of the classifier for interactive music systems.

2 Datasets

Although all guitars exploit the sound of vibrating strings, there are different types of
guitars and guitar sounds. In order to avoid biases or overfitting due to the use of a
single guitar for training data, we built an audio dataset recorded with four guitars of
different types:

• Godin LGX-SA solid-body guitar (God) – which has also a MIDI output – which
output has been fed to a AER Compact 30 jazz amplifier,

• Cort LCS-1 jazz guitar (Cort),
• Ovation Electric Legend (model Al Di Meola) electro-acoustic guitar (Ovat) and
• Godin Nylon SA nylon string guitar (Nyl) (see Fig. 1).

For each guitar, we created a dataset that consists of the recordings of seven jazz
standards: Bluesette, The Days of Wine and Roses, LadyBird, Nardis, Ornithology,
Solar, and Tune Up. Each song has been recorded three times, one for each playing
mode: melody, bass, and chords. The database contains therefore 84 files – 4 gui-
tars × 7 songs × 3 modes – for a total audio duration of 1 h 39 min. The audio datasets
may be downloaded at http://flow-machines.com/mode_classification_sets.

Fig. 1. The four guitars used to record the dataset. From left to right: pure solid-body Godin
LGX, hollow-body Cort jazz archtop, Ovation electro-acoustic, and nylon-string guitar Godin
Classic.

60 R. Foulon et al.

http://<LIG>fl</LIG>ow-machines.com/mode_classification_sets

3 The Mode Classifier

Our method uses a two-phase analysis: first, short signal frames (50 ms) are classified
with a supervised classification algorithm, which determines the playing mode over
short-time windows, with an imperfect accuracy. Then, information obtained over the
50 ms frames is aggregated to classify a whole audio chunk. The scheme of the
algorithm is shown in Fig. 3.

3.1 Feature Selection

We use a training set that consists of jazz guitar recordings corresponding to the three
playing modes “bass”, “melody” and “chords”. The training sets described in this
article are all extracted from the guitar recordings presented in Sect. 2.

We performed feature selection to determine which features are the most relevant
for our problem. We used the Information Gain algorithm [7] of Weka [9], set with the
lowest possible threshold (−1.8 × 10308) to obtain a list of features ranked by infor-
mation gain, and ran it on a set of 37 features divided in two sets:

(1) Basic audio features: MFCC (13), harmonic-to-noise ratio, spectral centroid,
spectral flatness, spectral kurtosis, spectral decrease, spectral spread, spectral
rolloff, spectral skewness, chroma (12), RMS.

(2) YIN features [8]: YIN pitch, YIN inharmonicity indicator and YIN variance.

Feature selection yields the six following features: harmonic-to-noise ratio, YIN
pitch and YIN inharmonicity, spectral spread, spectral centroid and spectral kurtosis.
This confirms that YIN features are indeed interesting for our task. To further reduce
the feature set, we retained only the four following features:

(1) YIN pitch, which was quantized to avoid overfitting (this point is explained
below), computed with an absolute threshold of 0.2 for aperiodic/total ratio,

(2) YIN inharmonicity coefficient, computed in the same manner,
(3) Harmonic-to-noise ratio (HNR) of the signal, computed with a fundamental fre-

quency of 185 Hz (which is the lowest frequency possible with 50 ms frames, we
would have to work with larger frame lengths to decrease the fundamental),

(4) Spectral spread.

3.2 Frame Selection and Training

The audio signals in the training set are normalized and then sliced into 50 ms frames,
with a 75 % overlap. We chose 50 ms to ensure that each frame contains at most one
musical event, even when dealing with fast tempos or virtuoso solos.

Preliminary empirical results show that, given our feature set, common statistical
classifiers (SVM, decision trees, and Bayesian networks) fail to classify correctly the
frames that contain transients. We remove silent frames and frames that contain tran-
sients from the training set, and train the classifier on the frames that contain the steady
part of the signal.

Automatic Classification of Guitar Playing Modes 61

To do so, we first use a noise gate with a −13 dB threshold to remove silent frames.
To detect quickly transient frames, we use a simple onset/offset detection algorithm,
presented in Fig. 2, which computes the difference between the RMS values of the first
10 and last 10 milliseconds of the signal, and applies a 6 dB threshold on it. More
sophisticated techniques such as frequency domain-based onset detection [5] can be
used, but the proposed solution is fast and works well enough for our goals.

Eventually, we extract the four features (YIN Pitch, YIN Inharmonicity Factor,
Spectral Spread, and HNR) from the remaining frames (i.e., the frames that contain
steady parts of the signal). We use this data to train classifiers using various machine
learning algorithms: a Support Vector Machine with linear, radial and polynomial
kernels, a Bayesian network and a J48 tree. The best classifier turns out to be a
Bayesian network (Weka’s BayesNet with a “GeneticSearch” algorithm with the
default parameters).

3.3 Performance on Frame Classification

To evaluate the performance of the Bayesian network, we train the classifier on one
song, The Days of Wine and Roses (the longest song of the database), taken from the
Godin guitar (God) subset, and test it on the six other songs. When we classify the
selected audio frames (discarding silent frames and transients) with our feature set and
the Bayesian network, we obtain an average F-measure of 0.87. This result is not
sufficient for a robust, real-time classifier. In the next section we add an aggregation, or
smoothing step to our method to further improve the classifier performance, following
the approach of Abesser [2].

3.4 Aggregation

In order to improve the classification performance, we aggregate the results of indi-
vidual frame classification within a given time window (called thereafter chunk) and

Fig. 2. Simple onset/offset detection procedure. The output of the algorithm is positive if there is
a difference of 6 dB or more between the two RMS values.

62 R. Foulon et al.

apply a winner-takes-all strategy to identify the mode of the chunk. For interactive
musical applications, a typical chunk size is one bar at reasonable tempos (1 s at
240 bpm, 4 s at 60 bpm). For extremely fast tempos, chunks of more than one bar
should be considered to avoid performance decrease due to small numbers of frames.

4 Results

This section describes various evaluations of the classifier (including aggregation),
highlighting the impact of using different guitars on classification robustness.

4.1 Evaluation on a One-Song Training Set

First, we train the classifier on one single song, “The Days of Wine and Roses”, taken
from the Godin guitar (God) subset. Then, we test it on the six other songs, for each
guitar subset, with a chunk duration of 1.5 sec. (the duration of one 4/4 bar at
160 bpm). The results are displayed on Table 1.

Fig. 3. General scheme of the classification algorithm.

Automatic Classification of Guitar Playing Modes 63

For the guitar subsets Cort and God, the results are slightly better than the pre-
liminary ones obtained with the Bayesian network without the aggregation step (0.87
average F-measure). However, the classification results are poor for the Ovat and Nyl
guitar subsets.

4.2 Evaluation with the Use of Larger Training Sets

To improve the performance, we increase the size of the training set: we train and
evaluate the classifier with the leave-one-out procedure. Hence, each training set
contains now six songs. To study the influence of the guitar type used for training and
testing, we repeat this procedure for each guitar subset. The results are displayed on
Table 2.

These results show that while a larger training set increases the accuracy, the
classification performance depends on the guitar used for training and testing: more
specifically, the pairs God/Cort and Ovat/Nyl seem to give better results when used
together (one for training and the other for testing). This can be explained by the fact
that the guitars used to record Ovat and Nyl subsets produce more high-frequency
content than the other ones: a feature such as spectral spread is sensitive to timbre.

Table 1. Classification performance obtained over six songs, for various guitar models

Guitar dataset God Cort Ovat Nyl

Mean F-measure 0.96 0.941 0.854 0.839

Table 2. Classification performance obtained with the leave-one-out procedure on the whole
dataset. The first number is the minimum F-measure over the six tested songs, the second is the
average F-measure

Tested guitar dataset
God Cort Ovat Nyl

T
ra

in
in

g
gu

ita
r

da
ta

se
t

God
0.956
0.971

0.933
0.968

0.654
0.90

0.71
0.901

Cort
0.94.3
0.963

0.974
0. 984

0.753
0.94

0.922
0.972

Ovat
0.885
0.92

0.917
0.955

0.964
0.978

0.956
0.978

Nyl
0.92

0.943
0.961
0.975

0.961
0.975

0.981
0.992

Avg.
F-measure

0.949 0.971 0.948 0.961

64 R. Foulon et al.

4.3 Evaluation with a Mixed Training Set

In order to make the classifier more independent of the guitar type, or more generally of
timbral variations, we pick tracks from each of the four subsets to build a new training
set. We use the recordings of The Days of Wine and Roses and Ladybird from each
subset to train the classifier and test the performance on the five remaining tracks.
Results are shown on Table 3.

Here, we can see that the use of a mixed training set, containing two songs (or a
total 31 min of audio), increases the overall performance. We evaluated the classifier
with larger training sets, but larger sets do not increase classification accuracy in a
significant way. This last training set will be used in the rest of this article.

4.4 Influence of the Analysis Window Length

Since the algorithm includes an aggregation step, we can assume that the accuracy of
the classifier depends on the length of the analyzed audio chunks. Figure 4 displays the
classification performance obtained over the five tracks which are not included in the
training set, for various analysis windows. As a comparison, we added, for each guitar
subset, the F-measures obtained without performing the aggregation over the 50 ms
frames.

We can see that the classification improves when increasing the analysis window
length, reaching a plateau at about .98.

4.5 Real-Time

Since the algorithm consists in feature extraction and simple Bayesian classification,
the overall complexity of the algorithm is linear with the analyzed audio window length
(other computation such as the aggregation is negligible). The average classification

Table 3. Classification performance obtained with the use of a mixed training set. We compare
the minimal F-measures over the four guitars in order to evaluate the timbral sensitivity of the
classifier.

Tested guitar dataset

God Cort Ovat Nyl
Min.

F-measure

T
es

t s
on

g Bluesette 0.971 0.988 0.989 0.995 0.971
Nardis 0.941 0.966 0.973 0.99 0.941

Ornithology 0.99 0.988 0.99 0.999 0.988
Solar 0.977 0.965 0.985 0.997 0.965

Tune Up 0.968 0.984 0.962 0.952 0.952
Min.

F-measure
0.968 0.978 0.98 0.987 0.968

Automatic Classification of Guitar Playing Modes 65

CPU is 2 % of real-time, with a Java implementation running on an Intel i7 2.67 GHz
quad-core, Windows laptop (e.g. the experienced latency obtained for the analysis of a
4/4 bar at 120 bpm is 20 ms). This clearly enables interactive musical applications on
commonly available hardware.

4.6 Comparison with MIDI-Based Classification

We compared our algorithm with the performance of a MIDI-based mode classifier
described in [14], using the Godin guitar subset (this guitar has a MIDI output). The
MIDI-based classifier trains a Support Vector Machine classifier on 8 MIDI features,
related to pitch, duration, velocity, and more advanced ones, aggregated over one bar.
This classifier is been trained on the song Bluesette, and tested on the six other songs.
In order to work with the same experimental settings, we adapted the analysis window
of our audio-based algorithm on each song, to match the length of a bar. The results are
displayed in Tables 4 and 5.

The results we obtain are still reasonable, but weaker than with the preceding
training sets. This is due to the fact that audio analysis requires larger training sets than
MIDI to reach the same performance. To illustrate this point, we increase slightly our
training set and train our classifier with two songs: Bluesette and The Days of Wine and
Roses. We repeat the testing procedure on the five remaining tracks. The confusion
matrix is displayed on Table 6.

These results show that our method provides results which are comparable to the
ones obtained with the MIDI output of the guitar. This result enables us to integrate our
algorithm in actual interactive live applications, without any MIDI support.

0.85

0.87

0.89

0.91

0.93

0.95

0.97

0.99

1 1.5 2 3 4

F-
m

ea
su

re

Analysis window length (s)

God Cort Ovat
Nyl God-noAgg Cort-noAgg
Ovat-noAgg Nyl-noAgg

Fig. 4. Classification performance obtained with different analysis window lengths. The series
followed by the mention noAgg (dotted lines) show the results obtained without the aggregation step.

66 R. Foulon et al.

5 Interactive Applications

VirtualBand [14] is an interactive musical engine that enables one or several musicians
to control virtual instruments. The virtual instruments interact with the users but also
with one another in real time, thus creating possibly complex interactive performance.
VirtualBand allows to build bebop-style improvisations by constraining the virtual
instruments to follow a predefined harmonic sequence.

VirtualBand was used to create a reflexive loop pedal for guitar. This application is
based on the mode classifier described here. The goal is to allow guitarists to play a trio
with themselves.

Two virtual instruments are instantiated by the system: a virtual bass player and a
virtual chord player. The virtual instruments are silent at the beginning of the session.
When the user starts improvising on the predefined chord sequence, its musical pro-
duction is analyzed by the classifier and used to feed the virtual instruments: when the
user plays a bar of bass, the corresponding signal is stored in an audio database

Table 4. Classification results obtained with the MIDI-based SVM classifier

Predicted class
Bass Chords Melody F-measure

A
ct

ua
l c

la
ss

Bass 1314 6 2 0.98

Chords 24 1294 13 0.97

Melody 1 12 1318 0.99

Table 5. Classification results obtained with our classifier

Predicted class
Bass Chords Melody F-measure

A
ct

ua
l c

la
ss

Bass 1118 1 3 0.947

Chords 85 1017 11 0.936

Melody 25 31 1065 0.968

Table 6. Classification results obtained with our classifier, with a larger training set

Predicted class
Bass Chords Melody F-measure

A
ct

ua
l c

la
ss

Bass 811 30 10 0.965

Chords 0 852 3 0.969

Melody 18 21 817 0.969

Automatic Classification of Guitar Playing Modes 67

accessible to the virtual bass player. Similarly, when the user plays a bar of chords, it is
stored in a database that is accessible to the virtual chord player. Each bar in the virtual
instrument’s databases are labeled with the harmony specified by the predefined chord
sequence.

Once the virtual databases are not empty anymore, the virtual instruments start to
play along with the user. They follow the “two-other-guys” principle: when the user
plays melody, the two virtual instruments play, thus producing the output of a typical
jazz guitar trio; when the user plays bass, the virtual chord player plays along; and
when the user plays chords, the virtual bass player plays along.

VirtualBand features a real-time pitch-shifting algorithm that enables the virtual
instruments to transpose the recorded audio chunks in the virtual databases. For
instance, if the user played a bar of chords in C7 (the harmony specified by the chord
sequence at a certain point in time), the virtual chord player will be able to play back
this bar, after transposition, when the chord sequence specifies a harmony of D7. This
is particularly useful if the user never played chords on a D7 harmony. This mechanism
reduces the feeding phase, i.e., the phase during which the user is playing chords and
bass lines to feed the virtual instruments.

VirtualBand also uses harmonic substitution rules enabling the virtual instruments
to play back music in a context it was not recorded in. For instance, a bar of chords that
was recorded in a C major context may be played back on an A minor context, using
the “relative minor” substitution rule, which states that A minor and C major are
somehow musically equivalent.

The combination of the transposition and substitution mechanisms allows to reduce
the feeding phase to a minimum, typically a few bars for a jazz standard, thus creating
lively and entertaining performance.

A detailed version of this example is given in Pachet et al. [14]. This application
allows the user to control the musical process while not using physical control devices
such as loop pedals, which would interfere with his creative flow. Hybrid modes, such
as the “bossa nova” mode (see the next section) can be added to this setup to enable
more sophisticated interactions, thanks to the addition of a new virtual instrument.

Another application of the mode classifier, implemented in the VirtualBand engine,
is to automatically process the input sound according to the playing mode. Depending
on the current playing mode, various audio effects are applied to the audio signal. For
instance, the system can add a specific reverberation effect to monophonic melody, tube
distortion to chords, and, say, apply dynamic compression and enhance the low end of
the bass. The effect chain is applied with a latency that corresponds to the chunk size
needed to perform mode classification, i.e., about 1 s.

6 Discussion

We have shown that YIN features, that represent half of our feature set, are efficient to
classify guitar playing modes: our classifier is accurate, robust to variations in guitar
type, and able to cope with real-time computational constraints, thanks to a small
feature set. We also showed that although the accuracy depends on the size of the
analyzed audio, this classifier can be used with realistic window sizes. Three points can
be improved, to further extend its applicability.

68 R. Foulon et al.

6.1 Features

The method raises issues when dealing with long chord decays (say, more than 5 sec.),
when only one note keeps sounding. This case falls off the boundaries of our algorithm
and feature set. One solution would be to add a robust onset detector to our algorithm,
and restrict the mode computation on the first seconds that follow an onset (we did no
implement such a solution).

Another limitation comes from the feature set: we work with a feature set that
answers a specific problem, but it may not be efficient to distinguish efficiently yet
other playing modes, such as strums or octaves. The algorithm is also somewhat
specific to the guitar: the YIN inharmonicity factor may not behave the same with less
harmonic instruments, such as the piano.

6.2 Hybrid Playing Modes

In our method, we perform an aggregation step because the frame classifier alone is not
accurate enough. Nevertheless, it provides a good hint about the rate of chords, melody
and bass, within audio chunks that contain a mixture of different playing modes. For
instance, we can consider an extra “bossa nova” playing mode which consists in
alternative bass/chords patterns. In order to recognize such a mode, we add an extra
rule to the aggregation step of the algorithm: before applying the winner-takes-all
strategy to our frames classes, we compute the weight of each class, without taking the
class probabilities into account, and we express it in absolute percentage. Then, we
consider the bass and chords weights: if they are both greater than, say, 20 % and lower
than 80 %, then we can consider that the chunk belongs to the “Bossa nova” class. Such
a rule could be also implemented in a classifier, so that the process is entirely auto-
matic. An example of such a hybrid mode is displayed in Fig. 5.

Although the frame classifier does not provide an accurate weight for each class
within a chunk, the ability to detect when the musician is performing this hybrid
playing mode brings new possibilities for building interactive applications. The pattern
displayed on Fig. 5 is correctly detected, however it represents only a particular case of
the bossa nova playing mode, in which bass and chords do not overlap. In the (fre-
quent) case when they overlap, the classifier performance drops sharply.

Fig. 5. Identification of bass and chord parts in a bossa nova guitar audio signal

Automatic Classification of Guitar Playing Modes 69

6.3 Absolute Aggregation vs. Time Series

In this paper, we use the simple winner-take-all strategy to aggregate the 50 ms frames
over the entire analysis window. This method does not take into account the time-series
nature of a musical audio signal. For instance, guitar players sometimes use low-
pitched notes in their melodic improvisation, and conversely, play walking bass with
high-pitched notes. With our window-based scheme, the classifier uses the YIN pitch
as a strong hint to distinguish the melody from the bass. As a consequence, the user
might be surprised by some results for those notes with intermediary pitches (e.g., in
the range C3–E3) also, since there is no high-level musical analysis of the currently
played phrase. The evolution and continuity between the different features values
extracted within an audio chunk could be evaluated over time, leading to a smarter way
to process these frames. We assume that a classifier that exploits such knowledge
would be more accurate and could efficiently identify more sophisticated playing
modes such as arpeggios, muted notes strumming, and, in general, playing modes
based on longer temporal patterns.

7 Conclusion

We have presented a simple and fast method to classify in real time guitar audio signals
into three basic playing modes: chords, melody, and bass. Our method is timbre-
independent and proves accurate with four different types of guitar.

The good performance of our classifier paves the way for interactive musical
systems allowing users to improvise with virtual copies of themselves to form, e.g., a
guitar trio. Future designs of the algorithm, in particular taking into account the con-
tinuity between frame analyses, will be able to distinguish more complex playing
modes, such as the bossa nova bass/chord mixing, thereby enabling the application to
other musical genres.

Automatic playing mode classification brings a lot of potential for designing
smarter augmented instruments. Interestingly, developing subtler and subtler playing
mode classifiers, from polyphony-based detection as we presented here to the identi-
fication of player-specific patterns (Montgomery’s octaves, Benson’s licks or Van
Halen’s fast harmonic arpeggios), infringes on the emerging domain of style modeling.

Acknowledgments. This research is conducted within the Flow Machines project which
received funding from the European Research Council under the European Union’s Seventh
Framework Programme (FP/2007-2013)/ERC Grant Agreement n. 291156.

References

1. Abesser, J., Lukashevich, H.M., Schuller, G.: Feature-based extraction of plucking and
expression styles of the electric bass guitar. In: Proceedings of International Conference on
Acoustics, Speech and Signal Processing, Dallas, pp. 2290–2293 (2010)

2. Abesser, J.: Automatic string detection for bass guitar and electric guitar. In: Proceedings of
the 9th International Symposium on Computer Music Modelling and Retrieval, London,
pp. 567–582 (2012)

70 R. Foulon et al.

3. Barbancho, I., Tardon, L.J., Sammartino, S., Barbancho, A.M.: Inharmonicity-based method
for the automatic generation of guitar tablature. IEEE Trans. Audio Speech Lang. Process.
20(6), 1857–1868 (2012)

4. De Cheveigné, A., Kawahara, H.: YIN, a fundamental frequency estimator for speech and
music. J. Acoust. Soc. Am. 111(4), 1917–1931 (2002)

5. Dixon, S.: Onset detection revisited. In: Proceedings of the 9th International Conference on
Digital Audio Effects, Montreal, pp. 113–137 (2006)

6. Fohl, W., Turkalj, I., Meisel, A.: A Feature relevance study for guitar tone classification. In:
Proceedings of the 13th International Study for Music Information Retrieval Conference,
Porto (2012)

7. Guyon, I., Elisseef, A.: An Introduction to variable and feature selection. J. Mach. Learn.
Res. 3, 1157–1182 (2003). (http://www.jmlr.org)

8. Hartquist, J.: Real-time musical analysis of polyphonic guitar audio. Ph.D. thesis, California
Polytechnic State University (2012)

9. Holmes, G., Donkin, A., Witten, I.H.: Weka: a machine learning workbench. In: IEEE
Proceedings of the Second Australian and New Zealand Conference on Intelligent
Information Systems, pp. 357–361 (1994)

10. Klapuri, A., Davy, M.: Signal Processing Methods for Music Transcription. Springer, New
York (2006)

11. Lachambre, H., André-Obrecht, R., Pinquier J.: Monophony vs polyphony: a new method
based on Weibull bivariate models. In: Proceedings of the 7th International Workshop on
Content-Based Multimedia Indexing, Chania, pp. 68–72 (2009)

12. Lähdeoja, O., Reboursière, L., Drugman, T., Dupont, S., Picard-Limpens, C., Riche, N.:
Détection des Techniques de Jeu de la Guitare. In: Actes des Journées d’Informatique
Musicale, Mons, pp. 47–53 (2012)

13. Özaslan, T.H., Guaus, E., Palacios, E., Arcos, J.L.: Attack based articulation analysis of
nylon string guitar. In: Proceedings of the 7th International Symposium on Computer Music
Modeling and Retrieval, Malaga, pp. 285–297 (2010)

14. Pachet, F., Roy, P., Moreira, J., d’Inverno, M.: Reflexive loopers for solo musical
improvisation. In: Proceedings of International Conference on Human Factors in Computing
Systems (CHI), Paris, pp. 2205–2208 (2013). (Best paper honorable mention award)

15. Reboursière, L, Lähdeoja, O., Drugman, T., Dupont, S., Picard-Limpens, C., Riche, N.: Left
and right-hand guitar playing techniques detection. In: Proceedings of New Interfaces for
Musical Expression, Ann Arbor, pp. 30–34 (2012)

16. Ryynänen, M.P., Klapuri, A.P.: Automatic transcription of melody, bass line, and chords in
polyphonic music. Comput. Music J. 32(3), 72–86 (2008). (MIT Press)

17. Sinyor, E., Mckay, C., Mcennis, D., Fujinaga, I.: Beatbox classification using ACE. In:
Proceedings of the 6th International Conference on Music Information Retrieval, London,
pp. 672–675 (2005)

18. Stein, M., Abesser, J., Dittmar, C., Schuller, G.: Automatic detection of audio effects in
guitar and bass recordings. In: Proceedings of the 128th Audio Engineering Society
Convention, London (2010)

19. Stowell, D., Plumbley, M.D.: Delayed Decision-making in real-time beatbox percussion
classification. J. New Music Res. 39(3), 203–213 (2010)

20. Tindale, A., Kapur, A., Tzanetakis, G., Fujinaga, I.: Retrieval of percussion gestures using
timbre classification techniques. In: Proceedings of the 5th International Conference on
Music Information Retrieval, Barcelona, pp. 541–544 (2004)

Automatic Classification of Guitar Playing Modes 71

http://www.jmlr.org

